Soybean sudden death syndrome (SDS) has become one of the leading soybean diseases in North America to reduce yield. SDS has two phases—a root rot phase and a leaf scorch phase.

Disease cycle

The sudden death syndrome (SDS) fungus (*Fusarium virguliforme*) survives the winter as spores in crop residue and soil. Early in the season, the fungus infects and grows in soybean roots. Infection and colonization are favored by cool, wet soil conditions. The SDS fungus produces toxins in soybean roots that are transported to leaves. As a result, interveinal yellow and brown blotches appear on the leaves, typically after flowering. Foliar symptoms are more severe after frequent or heavy midseason rains.

- **Early season infection of soybean roots.**
- **Growth of fungus in root tissue.**
- **Toxins produced by the fungus travel upwards from roots.**
- **Inoculum survives in corn and soybean residue and soil.**
- **Leaves may eventually drop and petioles remain attached to stem.**
- **Leaf symptoms result from toxins moving into foliage.**
Symptoms

Foliar symptoms
Leaf symptoms include yellow and/or brown lesions between the veins (interveinal chlorosis and necrosis) while leaf veins remain green. As the disease progresses, leaves die and prematurely drop from the plant. Pods and seeds also may abort.

(A) Interverinal chlorosis and necrosis from SDS and (B) Defoliated plants from SDS with petioles still attached.

Root and stem symptoms/signs
The woody tissue in the taproot (cortex) will be brown/gray while the upper portion of the center stem (pith) remains white. Blue masses of spores may be present on the root surface under wet conditions. Root symptoms and signs may be present even if foliar symptoms are not noticeable.

(C) Taproot discoloration symptoms of SDS and (D) Blue fungal growth on roots.
Others issues that look like SDS

Brown stem rot *(fungus: *Cadophora gregata*)
Stems will have reddish-brown discoloration in the pith, which may only be found at nodes. The stem cortex will remain a normal white/tan coloration. Leaf symptoms include interveinal chlorosis and necrosis of the youngest leaves. Leaf symptoms may not always occur. Root rot is typically not evident.

Stem canker *(fungus: *Diaporthe* spp.)*
A dark, red-brown canker (lesion) forms at a node outside the stem and can extend over several nodes. Lesions often do not entirely surround the stem or extend to the ground. Inside the stem there is discoloration or browning near the lesion. Leaves may have interveinal chlorosis and necrosis, but, unlike SDS, remain attached to the plant. Root rot is typically not evident.

Late season potassium deficiency *(top dieback)*
Uppermost trifoliate leaves appear yellow. Yellowing begins at leaf margins. Roots and stems will appear healthy. Symptoms occur in fields or parts of fields with low potassium.
Management

An integrated SDS management strategy is necessary since a single management tactic alone is not likely to provide adequate results. Management strategies include planting soybean varieties with resistance to SDS, using effective fungicide seed treatments, avoiding or reducing soil compaction, improving soil drainage in fields with recurring SDS, and maintaining proper pH and fertility levels.

![Planting soybean varieties with resistance to SDS can help manage the disease. This shows the differing varietal responses of more resistant plants (back) compared to those that are more susceptible (front).](image)

Acknowledgments

Authors

Martin Chilvers, Michigan State University; Carl Bradley, University of Kentucky; Anna Freije, Purdue University; Loren Giesler, University of Nebraska-Lincoln; Daren Mueller and Adam Sisson, Iowa State University; Damon Smith, University of Wisconsin; Albert Tenuta, Ontario Ministry of Agriculture, Food and Rural Affairs; Kiersten Wise, Purdue University

Reviewers

Emmanuel Byamukama, South Dakota State University; Anne Dorrance, Ohio State University; Doug Jardine, Kansas State University; Dean Malvick, University of Minnesota; Sam Markell, North Dakota State University; Laura Sweets, University of Missouri

Photographs

All photos were provided by and are the property of the authors except taproot discoloration and blue fungal growth by Tom Hillyer; brown stem rot split stem by Tristan Mueller; disease cycle illustrated by Renée Tesdall.

Sponsors

The Soybean Disease Management series is a multi-state and international collaboration sponsored by the North Central Soybean Research Program (NCSRP). This project was funded in part by the Grain Farmers of Ontario through Growing Forward 2 (GF2) funding, a federal-provincial territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario. Contributors to this series come from land-grant universities in the North Central states and Canada.